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Synopsis 

It is shown that the introduction of the fracture mechanics concepts, such as the strain energy 
release rate G ,  to solve the problem of the adherence of elastomers, the edge of contact being seen 
as a crack propagating in mode I in the interface, allows one to predict the dependence of the ad- 
herence force with the stiffness of testing machines. Moreover, i t  is shown the general equation 
of the kinetics of adherence proposed in 1978 by Maugis and Barquins, G - w = W & ( U T U ) ,  where 
w is DuprB’s work of adhesion and @ a dissipation function characteristic of the material only de- 
pending on temperature and crack speed, is confirmed whatever the stiffness of the testing machine 
and the instantaneous deformation imposed on the system. Experiments realized with a hemi- 
spherical glass lens in contact on a polyurethane surface verify theoretical predictions with an ac- 
curacy better than 1%. 

INTRODUCTION 

The adhesive contacts of rigid spherical punches on elastic solids have been 
studied by Johnson et al. (JKR theory),’ by introducing the energy balance 
concepL2 It is shown that, due to the existence of molecular attraction forces, 
contact area and elastic displacement are larger than values that can be deduced 
from the classical Hertz’s theory. The energy balance theory is based on mini- 
mizing the total energy of the system at  equilibrium, and the adherence force 
is obtained if the first derivative of the total energy takes the value zero. Maugis 
et aL3 have shown that this procedure cannot give information about the stability 
of the system, which depends on the second derivative of the total energy. In 
order to solve this problem, Maugis and B a r q u i n ~ ~ , ~  have reintroduced the 
concepts of fracture mechanics such as the strain energy release rate G and 
studied the stability by the sign of the derivative of G. So, it can be demonstrated 
that the stability depends on the stiffness k, of testing machines, and mono- 
tonically increases with k, when there is a change from a fixed load solicitation 
(k, = 0) to a fixed grips solicitation (k, = m).6 

Moreover, the concepts of fracture mechanics have been used to study the 
kinetics of the adherence by the general equation4 G - w = w$(aTu) ,  where w 
is DuprC’s work of adhesion and qb a dissipation function, characteristic of the 
viscoelastic material and of propagation in mode I. It was shown that the 
knowledge of 4, which depends only on the material property, the temperature, 
and the speed of the contact edge (seen as a crack propagating in the interface), 
allows one to predict the kinetics of propagation under fixed and cyclic b a d  or 
fixed crosshead velocity  condition^.^,^.^ 
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We show that theoretical predictions are also verified, with a reproducibility 
better than 1%, in a test a t  fixed displacement with a finite stiffness. 

ADHERENCE AT FIXED DISPLACEMENT A 

Let us consider (Fig. 1) the equilibrium of a rigid sphere of radius R in contact 
on an elastic half-space under the load PO. The contact radius a0 and the dis- 
placement 60 are given by the JKR theory? 

(1) 

(2) 

where w is Duprk's work of adhesion and K ,  a constant of elasticity equal to 
4E/3(1 - v2) ,  E and u being the Young modulus and the Poisson ratio of the 
elastic solid, respectively. 

The edge of the contact area, like any 3-dimensional crack, is subjected locally 
to a plane strain state, so that the strain energy release rate is linked to contact 
radius a and displacement 6 by4 

(3) 

and the junction of the elastic solid to the sphere is vertical (fracture mechanics 
ge~rnetry).~ A t  equilibrium, i.e., a = a0 and 6 = 60, G takes the value w (Griffith 
criterion). 

Starting from the equilibrium state under the load PO, it is possible by turning 
the screw (Fig. 1) to impose on the system a fixed displacement A. This one is 
divided in elastic displacement 6, of the spring of stiffness k, and elastic dis- 
placement 6 of the solid in contact with the rigid sphere. Thus, a force P = k,6, 
is exerted by the spring on the elastic solid and taking into account initial loading, 
one can write 

(4) 

czo = ((R/K){Po + 3awR + [GTwRPo + ( ~ T w R ) ~ ] ~ / ~ } ) ' / ~  

60 = a;/3R + 2Po/3~& 

G = ( ~ K / ~ T R ~ u ) ( c z ~  - R6)2 

A = 6 + P/k, - 60 - Po/k, 

I K  
I 
I RUBBER 

Fig. 1. Principle of the apparatus to study the state of equilibrium of a rigid sphere in contact on 
an elastic solid, with a testing machine with a finite stiffness. 



ADHERENCE OF ELASTOMERS 

Using the equation of state of the system5 

P = (3~K/2)(6  - a2/3R) 

similar to eq. (2) out of equilibrium, the eq. (4) becomes 

- + A + ps + a0) / (1 + k7 
km 2km 

Introducing the reduced values1 

llPll = P/3.rrwR 

U 

= (3rwR2/K)1/3 

6 
1 ' 6 "  = (.rr2w2R/3K2)1/3 

and adding 

A 
' l a ' '  = (.rr2W2R/3K2)1/3 

and 

the stiffness of the spring being normalized by the stiffness of the initial contact, 
eq. (6) can be rewritten as 

with 

Equilibrium at fixed A is given by G = w ,  i.e., 

and the limit of stability by5 

The locus of equilibrium points is represented in reduced coordinates by the 
curve 6(a) in Figure 2. For comparison, the case of a nonadhesive contact is 
drawn (curve 6 ~ ,  Hertz's theory). Curves ( 6 ) ~  show the variation of ll6ll with 
Ilu 1) at fixed displacement 11 All; these are independent of Duprh's work of adhe- 
sion, and their minima, when they exist, are all located on Hertz's curve 6 ~ .  
Moreover, these curves intersect the &-axis for finite values of 6 (as point Q') 
simply related to 11 All by 

(10) 
The radius of contact corresponding to the limit of stability can be deduced 

I I ~ I I ~ = o  = IIAII + IIaoI12+ (2IIPoII/IIaoII)(l + l/IIkrnII) 
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Fig. 2. Relations between elastic displacement 6 and radius of contact area a of a rigid sphere in 
contact on an elastic body, in reduced coordinates. The equilibrium curve is 6(a);  curves (6)a show 
the variation of 6 with Q a t  constant displacement A. The curve 6~ is given by the Hertz's 
theory. 

from eqs. (8) and (9); its value ]lac 11 is solution of the equation 

(11) 
and is represented by the point B in Figure 2. As expected, eq. (11) gives with 
k ,  = 0 and k ,  = a the classical values for a test at  fixed load (point C ,  /la 1 1 3  = 

and a t  fixed grips condition (point D, ]la I t 3  = l/18), re~pectively.'?~ 
The corresponding value of )16,II can be deduced from eq. (8): 

Hence, the critical value of 11 All to observe a stable equilibrium is equal to 
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The variation of (/61( with Ila 11 at  constant (lac ( 1  is plotted in Figure 2 (dotted 
line). Obviously, the equilibrium curve &(a) and the limit curve (a), are tangent 
a t  the point B. 

CRACK PROPAGATION AT FIXED DISPLACEMENT A 

The equilibrium defined by G = w may be disrupted by a change in displace- 
ment A. When G > w, the two solids, elastic body and rigid sphere, begin to 
separate and the contact area decreases; conversely, if G < w ,  the contact area 
increases and the crack recedes. The difference G - w represents the force 
applied per unit length of crack; it is the “motive” of the crack, which takes a 
limiting speed u that depends on the temperature. If it is assumed that visco- 
elastic losses are proportional to w,l0J1 and localized at  the crack tip, one can 
write4 

where the second member corresponds to the viscous drag resulting from the 
losses at the crack tip ( U T  is the shift factor in the WLF transformation). $ is 
a dimensionless function of the speed of propagation and the temperature. I t  
was s h o ~ n ~ , ~ 2 ~ ~  that it is independent of loading system, of the nature of the rigid 
material in contact, and of the geometry. The function 4 is characteristic of the 
viscoelastic material for the propagation in mode I, quite probably directly linked 
to the frequency dependence of the imaginary component of the Young’s mod- 
ulus. Knowledge of the function $ makes it possible to predict the evolution 
of the contact in all circumstanccs. The prediction only assumes that the rupture 
is adhesive, i.e., that the crack propagates a t  the interface, and that viscoelastic 
losses are limited to the crack tip, meaning that gross displacement must be 
purely elastic. Moreover, the multiplicative effect of w on viscoelastic losses 
[eq. (14)] has been confirmed by a test equivalent to 7rl2-peeling test, namely 
measurement of the rolling resistance of a glass cylinder in contact with a poly- 
urethane surface, a t  various levels of relative humidity.12J3 

Starting from the equilibrium under the load Po (point L in Fig. 2), let us apply, 
a t  the time t = 0, an instantaneous tensile displacement A; the equilibrium is 
then disrupted, the strain energy release rate [eq. ( 3 ) ]  increases, and the contact 
area decreases as the crack advances. I t  is shown in Figure 2 that there is first 
from equilibrium point L ,  an instantaneous modification of displacement 6 a t  
constant contact radius a0 (branch LM or LM’), corresponding to the elastic 
response of the elastomer. This is followed by a simultaneous variation of 6 and 
a at fixed displacement A along curve ( 6 ) ~ ,  which may lead to a new equilibrium 
state (branch M N )  if A > A,, or to rupture (branch M’Q’), if not. The crack 
propagation speed increases or decreases according to whether the sign of 
( d G l d a ) ~  is negative or positive. For a fixed A, the contact radius corresponding 
to the minimum of crack speed can be deduced from eqs. (7) and (12), and its 
value llai )I is the solution of 

G - W = W$(UTU) (14) 

The locus of corresponding points given by eq. (7) with lla, 11 = Ila ( 1  is plotted in 



2652 BARQUINS 

Fig. 3. Strain energy release rate vs. radius of contact area, in reduced coordinates, corresponding 
to Figure 2. 

Figure 2 (branch OBJ). So, it  is possible to observe a spontaneous increasing 
crack speed if the fixed displacement A is inferior or equal to the value Ai, de- 
duced from eq. (7) with IlaII = llaoll and eq. (12) with Jla, 11 = ilaoll: 

During the propagation along a curve (@A, the kinetics may be studied using 
eq. (14)) the strain energy release rate being given by eq. (3) with 6 calculated 
by eq. (6). G normalized by w is plotted as a function of contact radius in reduced 
coordinates in Figure 3. So long as A remains greater than A, [point I ,  eq. (13)], 
it is observed that G tends toward the limit w while a decreases toward a new 
equilibrium value. If Ai < A < A,, with Ai given by eq. (16), G first decreases, 
then increases: this is reflected by a deceleration followed by an acceleration 
of the crack and a curve a( t ) ,  contact area radius vs. time, has a point of inflexion 
at radius ai given by eq. (15). The minimized G is not observed if A < Ai (beyond 
point J); in this case, G increases constantly from its initial value and the crack 
speed accelerates to rupture. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The experiments were carried out using apparatus, shown in Figure 4, con- 
sisting essentially of a precision balance supporting at  the end of the arm, a 
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Fig. 4. Schematic arrangement of the apparatus used to study the adherence of a glass hemisphere 
to viscoelastic materials. 

hemispherical glass lens of radius R = 2.19 mm. This indenter is applied, for 
a duration t ~ ,  under a compressive load PO, against the flat surface of an elas- 
tomer. Then an instantaneous elongation A is imposed to a helical spring of 
stiffness k,, attached at  the other end of the balance arm and linked to a vertical 
micrometric stage. Five springs with stiffnesses 25.6,41.9,57.1,84.3, and 122.6 
N-m-l have been used. The contact area, illuminated by reflection of mono- 
chromatic light, is observed through the lens with a microscope. For a quanti- 
tative evaluation of the evolution of the contact area during rupture, a 16-mm 
camera records the contact areas at  25 frames/s with approximately tenfold 
magnification; the frames were then enlarged and measured. The apparatus 
also includes an inductive displacement transducer, used to record the dis- 
placement 6 of the indenter in the viscoelastic material. 

The viscoelastic material chosen was an optically smooth polyurethane, rec- 
ommended for dynamic studies in photoelasticity (PSM 4 Vishay, K = 8.9 MPa) 
and delivered as plates of thickness l/8 in. The surfaces were cleaned with alcohol, 
dried with warm air, and left during 30 min for the equilibrium with room at- 
mosphere to be reached. Temperature (18.5"C) and relative humidity (62%) 
remained constant for all the set of experiments. Microscopic examination fails 
to reveal any surface feature such as exuding substances or dust. The value of 
Duprk's energy (w = 61 mJ/m2) was deduced, by using eq. (I), from initial contact 
radii measured at the same point on the specimen surface, and, in order to avoid 
dwell time effects,14 the contact duration under initial loads was constant 
( t ~  = 10 min). In these conditions, the reproducibility is excellent. 

Figure 5 shows the variation of the contact radius with time for various stiff- 
nesses and the same displacement A = -1.6 mm. For small stiffnesses, a slow 
return towards a new equilibrium is o b s e ~ d  with a continuously decreasing crack 
speed. The equilibrium being not yet reached after 15 min, the theoretical value 
of equilibrium radius is noted in Figure 5. As expected, a slowing down of the 
crack, followed by an acceleration until the rupture is reached, is observed for 
high stiffnesses. The critical radii of contact ai given by eq. (15) are reported 
on the figure, and the agreement with the observed inflexion points is quite good. 
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Fig. 5. Variation with time of the radius of contact area of a glass hemisphere in contact with a 
polyurethane surface, for the same displacement A (-1.6 mm) and various stiffnesses k,. 

The dotted curve corresponds to the boundary between the two kinds of evolution 
of contact area with time; it was computed from eq. (13) and data of Figure 7. 
For comparison, the dashed line (k, = 0) represents the case of an unloading 
at constant load, and the a-axis, an unloading at  fixed grips condition (k, = a). 

TIME , s 

Fig. 6. Variation with time of the radius of contact area of a glass hemisphere in contact with a 
polyurethane surface, for the same stiffness h ,  (41.9 Nem-’) and various displacements A. 
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Thus, Figure 5 clearly shows the influence of machine stiffness on the kinetics 
of adherence of an elastomer. 

Figure 6 displays the variation of contact radius with time for various dis- 
placements A and the same helical spring of stiffness k, = 41.9 N-m-'. A similar 
behavior as in Figure 5 is observed: a small A leads to a new equilibrium with 
a constantly decreasing speed of propagation, and a large A provokes first a de- 
creasing crack speed and then an accelerating crack speed until contact is com- 
pletely broken. Moreover, observed inflexion points are in good agreement with 
theoretical values deduced from eq. (15). As expected, for a very large A, an 
instantaneous increasing crack speed is observed. The dotted line, computed 
from data of Figure 7, represents the evolution of contact area with time for the 
critical displacement A, = -1.23 mm, corresponding to the limit of stability [eq. 
(1311. 

Rupture of equilibrium for various stiffnesses k,, initial loads Po, and dis- 
placements A are shown in a diagram G(u) on Figure 7: the strain energy release 
rate G is calculated by eq. (3) with 6 given by eq. (6), and the crack speed is de- 
duced from the slope at each of the points of a curve a ( t ) .  All the results cor- 
roborate the previous findings4 and consequently confirm the general equation 
G - w = w @ ( a ~ u )  [eq. (14)], in which the function @ for polyurethane specimen 
varies4J2-14 as the sixth power of u ,  with w = 61 mJ.m-2. For comparison, results 
of unloading from Po = 50 mN to P' = -30 mN (i.e., a t  k, = 0), realized in the 
same condition of temperature and relative humidity, are given in Figure 7: 
experimental points fall on the same curve. 

Fig. 8. Displacement 6 vs. radius of contact area a corresponding to Figure 6: K = 8.9 MPa; R 
= 2.19 mm; PO = 50 mN; k ,  = 4.19 N-m-'. 
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By numerical integration of the general equation [eq. (14)], taking into account 
eqs. (3) and (6) and the variation of 4 with the sixth power of u ,  it is possible to 
predict the results of Figures 5 and 6. Computed curves (light lines) are in good 
agreement with experimental data: the light divergence observed for long times 
is probably due to dwell time effect resulting from the relaxation of stresses stored 
in the roughnesses compressed during initial contact.14 

Elastic displacements 6 have been recorded during crack propagation. Figure 
8 gives results corresponding to experiments described in Figure 6. The agree- 
ment with theoretical prediction (Fig. 2) is excellent: the purely elastic character 
of the displacements 6 is clearly apparent, and it is shown that viscoelastic losses 
are strictly limited to the crack tip. 

CONCLUSION 

It is shown that the introduction of the fracture mechanics concepts, such as 
the strain energy release rate G,  to solve the problem of the adherence of elas- 
tomers, the edge of contact being regarded as a crack propagating in mode I in 
the interface, allows one to predict the dependence of the adherence force with 
the stiffness of testing machines. 

It has been shown that the general equation of the kinetics of adherence pro- 
posed earlier? G - w = wd(aTu),  where w is DuprB’s work of adhesion and 4 a 
dissipation function characteristic of the material, is confirmed whatever the 
stiffness of the testing machine and the instantaneous deformation imposed. 
Experiments realized with a hemispherical glass lens in contact on a polyurethane 
surface verify theoretical predictions with an accuracy better than 1%. 

The author would like to express his gratitude to the Direction des Recherches, Etudes et Tech- 
niques, for the financial support given to this work (DRET Contract No. 78-609). 
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